Crystal Structure
Communications
ISSN 0108-2701

Transition metal complexes with thio-semicarbazide-based ligands. XLIV. ${ }^{1}$ Aqua(3-hydroxy-5-hydroxymethyl-2-methylpyridine-4-carboxaldehyde 3-methylisothiosemicarbazone$\left.\kappa^{3} O, N^{1}, N^{4}\right)$ nitratocopper(II) nitrate

Vukadin M. Leovac, ${ }^{\text {a }}$ Violeta S. Jevtović ${ }^{\text {a }}$ and Goran A. Bogdanovićb* ${ }^{\text {* }}$

${ }^{\text {a }}$ Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Yugoslavia, and ${ }^{\text {b }}$ VINČA Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, 11001 Belgrade, Yugoslavia
Correspondence e-mail: goranb@rt270.vin.bg.ac.yu
Received 19 June 2002
Accepted 3 September 2002
Online 30 September 2002

The title complex, $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)$, is the first metal complex with a Schiff base derived from isothiosemicarbazide and pyridoxal (pyridoxal is 3-hydroxy-5-hydroxymethyl-2-methylpyridine-4-carboxaldehyde). The $\mathrm{Cu}^{\mathrm{II}}$ environment is a square pyramid, the equatorial plane of which is formed by the tridentate $O N N$-coordinated isothiosemicarbazone and one water molecule, while the nitrate ligand is in the apical position. The existence of numerous strong intermolecular hydrogen bonds, and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, leads to a threedimensional supramolecular structure.

Comment

Transition metal complexes with ligands based on thiosemicarbazides (TSC) have been studied for many years because of their interesting structural properties and biological activity (West et al., 1991; Casas et al., 2000). The $\mathrm{Cu}^{\mathrm{II}}$ metal centre is especially interesting as an essential ion, since its complexes with TSC-based ligands exhibit a wide range of biological effects, such as antiviral, antitumour and antiinflammatory activity (West et al., 1993). Isothiosemicarbazones (ITSC) can also act as biologically active agents with antibacterial activity (Cardia et al., 2000).

A number of metal complexes with pyridoxal thiosemicarbazone (PxTSC) have been synthesized and structurally characterized to date, namely $\left[\mathrm{Mn}^{\mathrm{II}} \mathrm{Cl}(\mathrm{PxTSC})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}$ and $\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{PxTSC})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ (Ferrari et al., 1987), $\left[\mathrm{Zn}^{\mathrm{II}} \mathrm{Cl}-\right.$ (PxTSC) $] \cdot \mathrm{H}_{2} \mathrm{O}$ (Ferrari et al., 1992), $\left[\mathrm{Cu}^{\mathrm{II}} \mathrm{Cl}(\mathrm{PxTSC})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}$

[^0](Ferrari et al., 1994), $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{PxTSC}_{2}\right] \mathrm{Cl} \cdot \mathrm{EtOH}\right.$ (Ferrari et al., 1995), $\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{PxTSC})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Ferrari et al., 1998) and $\left[\mathrm{Au}^{\mathrm{III}} \mathrm{Cl}(\mathrm{PxTSC})\right] \mathrm{Cl}_{2} \cdot \mathrm{MeOH}$ (Abram et al., 2000). PxTSC ligands are usually coordinated as $O N S$-tridentate ligands, the only exception being for the $\mathrm{Au}^{\mathrm{III}}$ complex, where PxTSC is coordinated as an NS-bidentate ligand through the N/S atoms of the thiosemicarbazide fragment. The title complex, $\left[\mathrm{Cu}^{\mathrm{II}}-\right.$ $\left.\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} L\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} L\right.$ is pyridoxal 3-methylisothiosemicarbazone), (I), represents the first example of a transition metal complex with a pyridoxal isothiosemicarbazone (PxITSC) ligand to be synthesized and characterized by X-ray analysis. The $\mathrm{H}_{2} L$ ligand is coordinated to the $\mathrm{Cu}^{\mathrm{II}}$ atom through three atoms ($\mathrm{O} 1, \mathrm{~N} 1$ and N 3), forming two fused chelate rings (Fig. 1), one being five-membered (ITSC) and one six-membered (Px).

(I)

The coordination around the $\mathrm{Cu}^{\mathrm{II}}$ atom in (I) is squarepyramidal, as in all $\mathrm{Cu}^{\mathrm{II}}$ complexes with PxTSC. The apical $\mathrm{Cu}-\mathrm{O}$ bond is significantly longer than the other bonds in the coordination sphere, as was also observed in the other complexes. The different mode of coordination in complexes involving PxTSC (ONS) compared with (I) (ONN) leads to a difference in bond lengths in the TSC fragment, associated with a different π-electron delocalization in the $\mathrm{N}^{2}-\mathrm{C}^{3}-\mathrm{N}^{4}$ fragment (the superscript numbering is shown in the Scheme and is in accordance with IUPAC rules).

The $\mathrm{N}^{2}-\mathrm{C}^{3}$ and $\mathrm{C}^{3}-\mathrm{N}^{4}$ distances in complexes involving the TSC moiety are approximately equal (Bogdanović et al., 2001), whereas in complexes with ITSC-based ligands, and also in (I), the $\mathrm{C}^{3}-\mathrm{N}^{4}$ bond is significantly shorter (by about $0.08 \AA$) than the $\mathrm{N}^{2}-\mathrm{C}^{3}$ bond. As a consequence of the alkylation of the S atom, the $\mathrm{C}^{3}-\mathrm{S}$ bond is longer in (I) than in complexes involving PxTSC, whereas all bonds in the Px part of the ligand are of similar length in all complexes.

In the crystal structures reported to date, PxTSC has been coordinated as a neutral molecule in its complexes with $\mathrm{Mn}^{\mathrm{II}}$, $\mathrm{Cu}^{\text {II }}$ and $\mathrm{Au}^{\text {III }}$, whereas in the above-mentioned complexes of $\mathrm{Sn}^{\mathrm{II}}$ and $\mathrm{Co}^{\text {III }}$, and in $\left[\mathrm{Cu}^{\mathrm{III}}(\mathrm{PxTSC}) \mathrm{H}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$, it is coordinated as the monoanion. In (I), the ligand is coordinated as a neutral molecule and, as with PxTSC, the pyridoxal moiety of the ITSC ligand is in the zwitterionic form, resulting from migration of the phenolic OH H atom to the pyridine N atom. Further, the ITSC moiety, as in isothiosemicarbazides and other isothiosemicarbazones (Bogdanović et al., 2001; Novaković et al., 2002), exists in the imido form.

The chelate rings in (I), with an interplanar angle of $3.2(1)^{\circ}$, are almost coplanar and, together with the water molecule, form the equatorial coordination plane. All non-H atoms of
the equatorial PxITSC ligand are approximately coplanar, except for the O atoms of the $-\mathrm{CH}_{2}-\mathrm{OH}$ group, which is almost orthogonally directed out of the coordination plane. The $\mathrm{Cu}^{\mathrm{II}}$ atom is displaced from this plane towards the apically coordinated NO_{3} group by 0.202 (1) \AA; the donor atom O 8 is displaced from the plane by 2.586 (3) \AA. The interplanar angle between the coordinated nitrate and the equatorial plane is 78.6 (1) ${ }^{\circ}$.

The complex cation has five hydrogen-bond donor groups (atoms $\mathrm{N} 2, \mathrm{~N} 3, \mathrm{~N} 4, \mathrm{O} 1 W$ and O 2), whereas the two nitrate groups have six O atoms acting as hydrogen-bond acceptors. Consequently, numerous strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, plus weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds (Table 2) and intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (see below), give a three-dimensional supramolecular structure.

The crystal packing consists of tapes of molecules parallel to the y axis, which form layers parallel to both (103) and the coordination plane (Fig. 2). Within the tapes, residues are connected by direct $\mathrm{O} 1 W-\mathrm{H} \cdots \mathrm{O} 2$ hydrogen bonds and by hydrogen bonds involving uncoordinated NO_{3} groups within the tapes. Although all the tapes are crystallographically equivalent, they are connected in two different ways. Tapes A and B are connected by hydrogen bonds (two per molecule) which involve coordinated $\mathrm{N}_{6} \mathrm{O}_{3}$ groups (situated between neighbouring A and B tapes), and tapes B and C are connected by weak $\mathrm{C} 2-\mathrm{H} \cdots \mathrm{O} 5$ hydrogen bonds.

The layers are interconnected in several ways: (i) via $\mathrm{O} 2-$ $\mathrm{H} \cdots \mathrm{O} 3$ hydrogen bonds, (ii) by direct $\mathrm{Cu}-\mathrm{O} 8$ bonds from the $\mathrm{N}_{6} \mathrm{O}_{3}$ groups to the $\mathrm{Cu}^{\mathrm{II}}$ atoms of adjacent layers (the boundary of the reference layer is represented by dashed lines in Fig. 2), (iii) the coordinated nitrate is also hydrogen bonded to atoms $\mathrm{N} 4, \mathrm{C} 10$ and C 8 of two tapes $(A$ and $B)$ in an adjacent layer, and (iv) by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Desiraju \& Steiner, 1999; see below) with neighbouring layers, in such a way that

Figure 1
A view of the molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The packing diagram for (I) in two orthogonal projections, showing the intermolecular hydrogen bonds within and between the tapes $(A, B$ and C), which form parallel layers. The longer components of three-centre hydrogen bonds are not shown.
each molecule is involved in two intermolecular $\mathrm{C} 7-\mathrm{H} \cdots \pi$ interactions, as both donor and acceptor. In such a threedimensional network of hydrogen bonds, each formula unit forms 18 intermolecular hydrogen bonds with its neighbours, with two additional hydrogen bonds between the complex cation and the NO_{3} anion within the formula unit (Table 2). It may be concluded that the presence of two NO_{3} groups in (I) is of crucial significance for the manifestation of the threedimensional supramolecular crystal structure of this compound.

The intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are such that the C7-methyl group lies above the pyridine ring of the neighbouring ligand at $(-x, 1-y,-z)$, so that one of the H atoms is directed towards the centre of the pyridine ring. Geometric parameters for these $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are as follows: (i) the distance between the H atom bonded to atom C 7 and the centre $(C g)$ of the $\mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{N} 4 / \mathrm{C} 8 / \mathrm{C} 9$ aromatic ring is 2.69 (3) \AA, (ii) the γ angle between the line connecting the H atom and $C g$ and the normal to the $\mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{N} 4 / \mathrm{C} 8 / \mathrm{C} 9$ plane is $3(2)^{\circ}$, and (iii) the $\mathrm{C} 7-\mathrm{H} \cdots C g$ angle is $140(2)^{\circ}$.

Experimental

The pyridoxal 3-methylisothiosemicarbazone ligand, $\mathrm{H}_{2} L$, was prepared by the reaction of an ethanolic solution of 3-methylisothiosemicarbazide hydroiodide with pyridoxal hydrochloride, and subsequent neutralization with an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Green single crystals of (I) were obtained by the reaction of a hot ethanolic solution of the ligand with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (molar ratio 1:1).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\right)-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)$
$M_{r}=459.89$
Triclinic, $P \overline{1}$
$a=7.945(3) \AA$
$b=9.262(3) \AA$
$c=11.701(3) \AA$
$\alpha=85.13(2)^{\circ}$
$\beta=89.34(3)^{\circ}$
$\gamma=80.35(3)^{\circ}$
$V=845.8(5) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.806 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 23 \\
& \quad \text { reflections } \\
& \theta=12.0-16.8^{\circ} \\
& \mu=1.48 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prismatic, green } \\
& 0.40 \times 0.26 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.017$
\quad diffractometer	$\theta_{\max }=26^{\circ}$
$\omega / 2 \theta$ scans	$h=0 \rightarrow 9$
Absorption correction: Gaussian	$k=-11 \rightarrow 11$
$\quad(P L A T O N ;$ Spek, 1990,1998$)$	$l=-14 \rightarrow 14$
$T_{\min }=0.675, T_{\max }=0.815$	2 standard reflections
3570 measured reflections	frequency: 60 min
3316 independent reflections	intensity decay: none
2853 reflections with $I>2 \sigma(I)$	

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 1$	$1.8849(19)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.365(3)$
$\mathrm{Cu}-\mathrm{N} 3$	$1.932(2)$	$\mathrm{N} 3-\mathrm{C} 1$	$1.278(3)$
$\mathrm{Cu}-\mathrm{O} 1 W$	$1.955(2)$	$\mathrm{C} 1-\mathrm{S}$	$1.751(3)$
$\mathrm{Cu}-\mathrm{N} 1$	$1.975(2)$	$\mathrm{S}-\mathrm{C} 2$	$1.786(3)$
$\mathrm{Cu}-\mathrm{O} 8$	$2.410(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.452(4)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.286(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.428(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.366(3)$	$\mathrm{O} 1-\mathrm{C} 5$	$1.293(3)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 3$	$171.27(9)$	$\mathrm{O} 1 W-\mathrm{Cu}-\mathrm{N} 1$	$161.43(11)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 1 W$	$91.87(10)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 8$	$84.54(8)$
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{O} 1 W$	$93.71(11)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{O} 8$	$101.30(9)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1$	$91.49(9)$	$\mathrm{O} 1 W-\mathrm{Cu}-\mathrm{O} 8$	$98.09(11)$
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 1$	$81.12(9)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 8$	$100.41(9)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots$ A	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H1N2 \cdots O 4	0.87 (4)	2.41 (4)	3.174 (3)	147 (3)
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{O} 5$	0.87 (4)	2.03 (4)	2.837 (3)	154 (3)
$\mathrm{N} 3-\mathrm{H} 1 \mathrm{~N} 3 \cdots \mathrm{O} 3^{\text {i }}$	0.80 (4)	2.32 (4)	3.040 (3)	151 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O}^{\text {i }}$	0.74 (5)	2.00 (5)	2.698 (3)	158 (5)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O}^{\text {i }}$	0.77 (6)	1.98 (6)	2.714 (3)	157 (5)
$\mathrm{C} 2-\mathrm{H} 3 \mathrm{C} 2 \cdots \mathrm{O}^{\text {ii }}$	0.84 (4)	2.61 (4)	3.446 (4)	177 (3)
$\mathrm{C} 10-\mathrm{H} 2 \mathrm{C} 0 \cdots \mathrm{O} 7^{\text {iii }}$	1.02 (3)	2.52 (3)	3.404 (4)	145 (2)
$\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2 \cdots \mathrm{O} 3^{\text {iv }}$	0.76 (4)	2.10 (4)	2.862 (3)	174 (4)
$\mathrm{N} 4-\mathrm{H} 1 \mathrm{~N} 4 \cdots \mathrm{O}^{\text {v }}$	0.77 (3)	2.47 (4)	3.078 (4)	137 (3)
N4-H1N4 $\cdots \mathrm{OB}^{\text {v }}$	0.77 (3)	2.05 (4)	2.795 (3)	164 (3)
$\mathrm{C} 8-\mathrm{H} 1 \mathrm{C} 8 \cdots \mathrm{O}^{\text {vi }}$	0.98 (3)	2.47 (3)	3.248 (4)	135 (2)

Symmetry codes: (i) $x, y-1, z$; (ii) $2-x, 1-y, 1-z$; (iii) $1-x, 1-y,-z$; (iv) $x-1, y, z$; (v) $-x, 1-y,-z$; (vi) $x-1,1+y, z$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.095$
$S=1.05$
3316 reflections

308 parameters

All H -atom parameters refined

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0554 P)^{2} \\
&+0.3428 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \text { e } \AA^{-3}
\end{aligned}
$$

All H atoms were found in difference Fourier maps and refined isotropically. A Gaussian-type absorption correction based on the crystal morphology was applied (Spek, 1990, 1998).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 EXPRESS (Enraf-Nonius, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

This work was supported financially by the Ministry for Science and Technology of the Republic of Serbia (Project No. 1318).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1514). Services for accessing these data are described at the back of the journal.

References

Abram, U., Ortner, K., Gust, R. \& Sommer, K. (2000). J. Chem. Soc. Dalton Trans. pp. 735-744.
Bogdanović, G. A., Leovac, V. M., Novaković, S. B., Češljević, V. I. \& Spasojević-de Biré, A. (2001). Acta Cryst. C57, 1138-1140.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cardia, M. C., Begala, M., Delogu, A., Maccioni, E. \& Plumitallo, A. (2000). Farmaco, 55, 93-98.
Casas, J. S., García-Tasende, M. S. \& Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.
Desiraju, G. R. \& Steiner, T. (1999). Editors. The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ferrari, M. B., Fava, G. G., Pelizzi, C., Pelosi, G. \& Tarasconi, P. (1998). Inorg. Chim. Acta, 269, 297-301.
Ferrari, M. B., Fava, G. G., Pelizzi, C. \& Tarasconi, P. (1992). J. Chem. Soc. Dalton Trans. pp. 2153-2159.
Ferrari, M. B., Fava, G. G., Pelizzi, C., Tarasconi, P. \& Tosi, G. (1987). J. Chem. Soc. Dalton Trans. pp. 227-233.
Ferrari, M. B., Fava, G. G., Pelosi, G., Rodriguez-Arguelles, M. C. \& Tarasconi, P. (1995). J. Chem. Soc. Dalton Trans. pp. 3035-3039.

Ferrari, M. B., Fava, G. G., Tarasconi, P., Albertini, R., Pinelli, S. \& Starcich, R. (1994). J. Inorg. Biochem. 53, 13-25.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Novaković, S., Tomić, Z., Jevtović, V. \& Leovac, V. M. (2002). Acta Cryst. C58, m358-m360.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Spek, A. L. (1998). PLATON. Version 20501. University of Utrecht, The Netherlands.
West, D. X., Liberta, A. E., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. \& Yeranade R. G. (1993). Coord. Chem. Rev. 123, $49-71$.
West, D. X., Padhye, S. B. \& Sonawane, P. B. (1991). Structure and Bonding, Vol. 76, pp. 1-49. Berlin: Springer-Verlag.

[^0]: ${ }^{1}$ Part XLIII: Novaković et al. (2002).

